	Due date:
	Fri, Dec 12 2008 (Before Class)

Computer Architecture

Assignment #9
Due: Friday Dec 12 2008 by 12:00 PM (beginning of class)
Email-based Help Cutoff: Noon on Thu Dec 11 2008

Maximum Points: 85
	Objective

The objective of this homework is to obtain an understanding of x86 architecture, pipe lining, CPI, and Performance.
Submission Instructions

Download and save this MS-Word document to your machine. Complete the solution for each one of the following exercises in this document. Once you have completed all the solutions upload the document back to Blackboard using the appropriate link. The schematics (if any) must be drawn using MultiSIM, with necessary labels. For the number conversion exercises, the intermediate steps are more important than the final result. Ensure you clearly show intermediate steps otherwise you will not get full credit. You will be penalized for shabby work!

	Name:
	

1. The following questions relate to the memory access modes supported by the x86 architecture. Clearly describe the address computation process and the operation performed by each one of the following assembly instructions. I have already filled in a couple to try and illustrate the minimum requirement.
[2 points each. 6*2=12 points]

	Instruction
	#Bytes

Affected
	Description

	movl 1000, %eax
	4
	This instruction moves an int (4-bytes) stored in memory at memory address 1000 (decimal) into register eax.

	movw 9(%eax, %ebx, 1), %cx
	2
	This instruction first computes a memory address as: address=eax+(ebx*1)+9 and copies a word (2-bytes) stored at the resulting address into register ecx.

	movb $’0’, %al
	1
	Moves the ASCII code for ‘0’ (48) into register al.

	movw 2000, %ax
	2
	Noting that there is no ‘$’ (dollar) before 2000, this instruction moves 2-bytes stored at memory address 2000 into register ax.

	movl $0, (%eax)
	4
	Nothing the () (parentheses) around eax register, this instruction stores the constant 0 into the memory address contained in eax register. That is, if eax contains the value 1234, the instruction stores 0 (32-bits) at memory address 1234.

	movw -3(%eax), %ebx
	2
	This instruction uses the value of eax - 3 as an address and loads 2 bytes stored at eax - 3 into the register ebx.

	movw %cx, (%eax, %ebx, 4)
	2
	This instruction first computes the destination address = eax + (ebx * 4). It stores the 16-bits of cx register into the memory location indicated by the destination address.

	movb %cl, (%eax)
	1
	Stores the 8-bits of cl register into the memory location whose address is contained in the eax register.

2. The following exercises utilize knowledge on memory access modes to determine the effects of various types of instructions on memory contents. One of the key points to note with x86 architecture is that it uses Little Endian scheme for storing word (2-bytes) and int (4-byte) values in memory – that is, the most significant byte (MSB) is stored at a higher address. Use the following memory layout (addresses range from 100016 to 101316) and contents when answering all of the questions below:

	1000
	1001
	1002
	1003
	1004
	1005
	1006
	1007
	1008
	1009

	01
	02
	03
	04
	05
	05
	01
	04
	02
	01

	
	
	
	
	
	
	
	
	
	

	100A
	100B
	100C
	100D
	100E
	100F
	1010
	1011
	1012
	1013

	00
	01
	 BB
	AA
	
	
	
	
	
	

a. What is the value in register ebx (in hexadecimal) after the following assembly code is executed: [2 points]
xorl %eax, %eax // eax = 0
movw $0x1000, %ax // ax = 0x1000
movl %eax, %ebx // ebx = 0x1000
	Value in ebx is:
	0x1000
	16

b. What is the value in register ecx (in hexadecimal) after the following assembly code is executed: [2 points]
movl $0x1000, %eax // eax = 0x1000
movl 1(%eax), %ecx // ecx = 0x05040302
	Value in ecx is:
	0x5040302
	16

c. What is the value in register ecx (in hex) after the following assembly code is executed: [4 points]
movl $0x1000, %eax // eax = 0x1000
movl $0, %ebx // ebx = 0x0
movl (%eax, %ebx, 4), %ecx // ecx = Mem(1000+0*4) = 0x04030201
incl %ebx // ebx = 1
addl (%eax, %ebx, 4), %ecx // ecx += mem(1000+1*4)
 // ecx += 0x04010505

 // ecx = 0x08040706
	Value in ecx is:
	0x8040706
	16

d. Suppose the symbol var refers to address 0x100C, illustrate the change in the memory (in the layout table shown in previous page) due to executing the following instructions: [3 points]
movl $0, %eax // eax = 0
movw $var, %ax // eax = ax = 0x100c
subl %ebx, %ebx // ebx = 0
movw $0xAABB, 0(%eax,%bx,1) // mem(0x100c+0*1) = 0xAABB
e. Suppose the symbol var refers to address 0x1000, What is the value in ax register in hexadecimal: [4 points]

movw var, %ax // ax = 0x201

movb 0x1000, %bx // bx = 0x1

cmpw %ax, %bx // is bx > ax?

jge ovr // jmp to ovr

addb $5, %al // ax += 0x5, ax = 0x206
ovr:
addb $1, %al // ax += 0x01, ax = 0x207
	Value in ax is:
	0x207
	16

3. Prior to answering these questions review bitwise operations from the BinaryReview.doc handout (available off Blackboard under Course Documents → Handouts). What is the result of performing the following bitwise operations: [3 points each]

a. AA16 bitwise-xor AA16
	AA =
	1
	0
	1
	0
	1
	0
	1
	0

	AA =
	1
	0
	1
	0
	1
	0
	1
	0

	Result=
	0
	0
	0
	0
	0
	0
	0
	0

	The result is:
	00
	16

b. C416 bitwise-or 3B16
	C4 =
	1
	1
	0
	0
	0
	1
	0
	0

	3B =
	0
	0
	1
	1
	1
	0
	1
	1

	Result=
	1
	1
	1
	1
	1
	1
	1
	1

	The result is:
	FF
	16

c. AA16 bitwise-and 5516
	C4 =
	1
	0
	1
	0
	1
	0
	1
	0

	3B =
	0
	1
	0
	1
	0
	1
	0
	1

	Result=
	0
	0
	0
	0
	0
	0
	0
	0

	The result is:
	00
	16

4. The following questions pertain to fundamental concepts of pipelining.

a. What is pipelining? [1 point]

Pipelining is an architectural implementation technique in which stages of instruction processing from multiple instructions are overlapped to improve overall throughput of a CPU.

b. What is a structural hazard? Illustrate an example of a structural hazard [2 points]

Structural hazards arise due to lack of availability of resources or due to limitations of hardware components. For example two consecutive instructions that attempt to read/write to memory may have to stall because memory operations cannot be overlapped with each other due to limitations of the CPU-Memory interconnect.

c. What is a control hazard? Give an example of a control hazard [2 points]

A control hazard arises to conditional and unconditional branch instructions that require the pipeline to be flushed and new set of instructions to be loaded. Examples of control hazard are most programs that use a jmp instructions.

d. What is a data hazard? Give an example of a data hazard. [2 points]

Data hazards are dependencies that arise between instructions when the next instruction uses results from immediately preceding instruction. For example, the following two instructions have a data hazard between them because the result of the previous instruction is used in t he next instruction.

addl %eax, %ebx

movl %ebx, %ecx
e. What is a stall? What is the difference between an hazard and a stall? [2 points]

When a instruction has to wait for previous instruction to complete it is called a stall. Stalls are results from hazards that arise in a pipeline.

f. There is a data hazard between the following instructions. Identify and briefly describe the source of the data hazard. Then, reorganize and rewrite the instructions (just change order of instructions and nothing more) to resolve the data hazard. Assume variables a, b, and c (used in the assembly snippet below) are all distinct integer values defined in the assembly code.

Movl $a, %eax

Movl $b, %ebx

Addl %ebx, %eax

Movl %ebx, $c

Brief description of the data hazard: [2 points]

	The 3th instruction is dependent on the result from 2nd instruction and there is 1 stall because of that. This stall can be avoided by reordering the instructions as shown below.

Revised instructions to resolve the data hazard: [3 points]

	Movl $b, %ebx
Movl $a, %eax
Movl %ebx, $c
Addl %ebx, %eax

g. What is a super scalar processor? [1 point]
A superscalar processor has several ALUs that can concurrently process multiple instructions in a single clock cycle.

h. How does a superscalar processor achieve lower CPI? [1 point]

A superscalar processor has several ALUs that can concurrently process multiple instructions in a single clock cycle. Since multiple instructions are concurrently processed, a superscalar processor manages to achieve a lower CPI.

5. When a x86 processor executes the INT instruction, it pushes the current eip (32-bit), cs (16-bit), and eflags (32-bit) registers on the stack before starting execution of the Interrupt Service Routine (ISR). Assuming current eip, cs, and eflags values are 0x08048076, 0x0073, and 0x00000246 respectively, illustrate the layout of the stack (in the adjacent figure) just after the INT instruction is executed. Assume each row in the adjacent figure is 2-bytes (16-bits) wide. Pay attention to Little Endian representation when splitting 32-bit values. [3 points]

	

	

	

	0x8076

	0x0804

	0x0073

	0x0246

	0x0000

If the initial value of SP register was 0x1000 what would be the value of SP just after the INT instruction is executed: [2 points]

	The value of SP is:
	0xFF6
	16

6. Recollect that the address of an ISR (Interrupt Service Routine) is determined by looking up the entry corresponding to interrupt number (INT#) in the Interrupt Vector Table (IVT). Given the following IVT layout and the symbol table indicate the names of the ISR’s that are invoked by the following instructions. The first one is already completed to illustrate an example.

[4 points]
	Interrupt Vector Table (IVT):
	
	Symbol Table:

	INT#
	+010
	+110
	+210
	+310
	+410
	
	Symbol
	Address

	010
	0x1FF
	0xC0
	0xC0
	0xFA
	0x1FF
	
	exitISR
	0xFA

	510
	0xFA
	
	0x1FF
	0xC0
	
	
	rebootISR
	0xC0

	1010
	
	0xC0
	
	
	0xFA
	
	haltISR
	0x1FF

	a.
	int $0x03 invokes ISR:
	exitISR

	
	
	

	b.
	int $0x0B invokes ISR:
	rebootISR

	
	
	

	c.
	int $0x07 invokes ISR:
	haltISR

	
	
	

	d.
	int $0x00 invokes ISR:
	haltISR

	
	
	

	e.
	int $0x0e invokes ISR:
	exitISR

7. Typically an ISR is invoked using the INT instruction and it returns control back via the IRET instruction. Suppose an operating system ISR (invoked using the int instruction) needs to return control using the ret instruction rather than the iret instruction (to achieve certain special operations), how would you go about achieving this task? Illustrate the sequence of assembly instructions that you would use to achieve this objective. [3 points]
movl -6(%esp), %eflags
movw -4(%esp), %cs
 ret
8. A given application written in Java runs 15 seconds on a desktop processor. A new JVM is released that requires only 0.6 as many instructions as the old on. Unfortunately the new JVM increases the CPI 1.1 times. How fast can we expect the Java application to run using this new JVM? [4 points]
Let the Java program have I instructions. Let the old JVM’s CPI be X. Then, the old JVM takes 15 seconds to complete I(X cycles. In the new JVM, the number of instructions is 0.6I and its CPI is 1.1X. The new JVM must perform 0.6I * 1.1X = 0.66(I(X cycles. Therefore the new JVM will run the program in 15 * 0.66 = 9.9 seconds.
9. A programmer is trying to decide between two code sequences for a particular computer. The code sequences use three different types of instructions labeled: TA, TB, and TC. The hardware designers have supplied the following facts about these three types of instructions:

	
	TA
	TB
	TC

	CPI
	1
	2
	3

Key characteristics of the two different code sequences (labeled CS1 and CS2) that the programmer is considering are shown in the table below:

	Code Squence
	Instruction counts for different types of instructions

	
	TA
	TB
	TC

	CS1
	2
	1
	2

	CS2
	4
	1
	1

Using the above information answer the following questions:

a. What is the total number of instructions executed by CS1 approach? [1 point]

Total number of instructions = 2 + 1 + 2 = 5
b. Indicate the total number of instructions executed by CS2 approach? [1 point]

Total number of instructions = 4 + 1 + 1 = 6
c. What is the total number of clock cycles required by approach CS1? [2 points]
Total number of clock cycles = (2*1) + (1*2) + (2*3) = 10
d. What is the total number of clock cycles required by approach CS2? [2 points]

Total number of clock cycles = (4*1) + (1*2) + (1*3) = 9
e. What is the average CPI of CS1? [2 points]

Average CPI = 10 / 5 = 2 CPI
f. What is the average CPI of CS2? [2 points]

Average CPI = 9 / 6 = 1.5 CPI

10. Complete the following assembly language program that is attempting to find largest value from an array of integers:

[7 points]

· The address of the array is indicated by the symbol intArray.

· The variable arrayLen contains the number of elements in intArray (assume arrayLen > 0)
· The variable max must contain the maximum value.

	.text

.global _start

_start:

 movl arrayLen, %ecx

 movl $0, %ebx

 movl intArray(%ebx), %eax

 movl %eax, max

loop:

 addl $4, %ebx

 decl %ecx

 jz exit

 movl max, %eax

 cmpl intArray(%ebx), %eax

 jg loop

 movl intArray(%ebx), %eax

 movl %eax, max

 jmp loop
exit: /* Assume code to exit is here */
.data

max : .int 0 /* Variable to contain max value */
intArray : /* Assume array of integers is defined */
arrayLen : .int /* Some value indicating length of array */

SP

Address

	Page 7 of 10

