	Due date:
	Fri, Nov 7 2008 (By 12:00 PM EST)



Computer Architecture

Assignment #7
Due: Friday Nov 7 2008 by 12:00 PM
Email-based Help Cutoff: Noon on Thu Nov 6 2008 

Maximum Points: 40
	Objective

The objective of this homework is to develop an assembly language program using involving:
· Integer arithmetic
· Conditional execution of instructions
· Looping constructs
Submission Instructions

Develop your assembly language program in a file called sphere.s. Verify your program operates correctly for all the test cases shown. Once you have verified your assembly program is operating correctly upload the assembly source file sphere.s to Blackboard using appropriate link.


Program description:

From a conceptual perspective this program is rather simple and must perform the following tasks:

1. Prompt the user to enter the radius of a sphere.

2. Read the radius of the sphere from the user

a. In assembly you will have to read character by character from the user until you read the newline character (‘\n’). See tree.s from Exercise #15 on how to read a character from standard input.

b. As you read-in each character you need to suitable convert the characters into a single integer representing the radius. Your program must have a variable called radius that contains the radius the user entered.
3. Compute the volume of the sphere using radius and the following formula:

[image: image1.png]4
volume = gnR3, where R is radius of sphere




a. When implementing the above formula do all the multiplications first and then the divisions to obtain the best possible integer approximation

b. In the above formula assume the irrational is can be represented by 22/7

4. Print the volume of the sphere

a. This step is best performed by first reversing the digits in volume and tracking the number of digits

b. Printing each digit in the reversed number back and ensuring you print sufficient number of digits (to account for trailing zeros)

Sample outputs:
The output from several sample runs of the completed assembly program is shown below. User inputs are in red.

	Run #1 (base case)
	
	Run #2

	raodm@easlnx01:~/csa278> ./sphere

Enter radius of sphere: 0
Volume of sphere: 0

raodm@easlnx01:~/csa278>
	
	raodm@easlnx01:~/csa278> ./sphere

Enter radius of sphere: 1
Volume of sphere: 4

raodm@easlnx01:~/csa278>

	
	
	

	Run #3
	
	Run #4

	raodm@easlnx01:~/csa278> ./sphere

Enter radius of sphere: 10
Volume of sphere: 4190

raodm@easlnx01:~/csa278>
	
	raodm@easlnx01:~/csa278> ./sphere

Enter radius of sphere: 1000
Volume of sphere: 100031146

raodm@easlnx01:~/csa278>

	
	
	

	Run #5
	
	Run #6

	raodm@easlnx01:~/csa278> ./sphere

Enter radius of sphere: 22
Volume of sphere: 44620

raodm@easlnx01:~/csa278>
	
	raodm@easlnx01:~/csa278> ./sphere

Enter radius of sphere: 75
Volume of sphere: 1767857

raodm@easlnx01:~/csa278>


Grading Rubric:
· Minimum requirements for your program to be even considered for grading:

· The program compiles without any errors or warnings.

· The program links correctly to generate the final executable.

· The program operates correctly for the base case (Run #1 shown earlier).

· The program has comments indicating

· 2 Points: The program prompts the user with the correct message to enter a radius of sphere

· 10 points: The program correctly reads the numbers entered by the user, converts them to an integer and stores them in a variable named radius.

· 2 Points: The program displays the message “Volume of sphere: “correctly.

· 15 points: The program correctly prints the volume of the sphere.

· 2 Points: The program correctly prints a newline after displaying the volume of sphere.

· 9 Points: The program has liberal comments and Java code snippets illustrating the logic at each major segment of the code. The program is neatly written, well organized, uses meaningful variable names, and follows all the stipulated CSA programming style guidelines.

Tips & Suggestions:
· This program is trickier than you think. So start early.

· First write the program in Java to ensure you get your logic correct. For easy translation to assembly, your Java program should:

· Read character-by-character using Scanner for input.

· Must not use any String objects in it.

· Use only to standard algebraic operations (including modulo) for number transformations.

· For converting characters (‘0’…’9’) to numbers, simply subtract (or add) character ‘0’ from the number (depending on the type of conversion you are doing) as shown in the code snippet below:

	movb digit, %al

subb $’0’, %al

.data

digit: .byte ‘1’


· Define an integer variable called ten with the value 10. This variable will come in handy for multiplication and division operations.
· The debugger gdb is your friend here. You must get used to working with gdb in order to ensure you are able to troubleshoot and debug your assembly program.
Turn-ins:
Once you have ensured that your program meets the stipulated requirements, passes the base case, and operates correctly then upload your assembly source code (sphere.s) to Blackboard using the appropriate submission link. No credit will be given for uploading just binary files.




































	Page 3 of 3



