	Due date:
	Fri, Oct 31 2008 (Before Class)

Computer Architecture

Assignment #6
Due: Friday October 31 2008 by 12:00 PM (beginning of class)
Email-based Help Cutoff: Noon on Thu 30th October 2008

Maximum Points: 68
	Objective

The objective of this homework is to obtain an understanding of x86 architecture, x86 instruction set, and assembly language programming.
Submission Instructions

Download and save this MS-Word document to your machine. Complete the solution for each one of the following exercises in this document. Once you have completed all the solutions upload the document back to Blackboard using the appropriate link. The schematics (if any) must be drawn using MultiSIM, with necessary labels. For the number conversion exercises, the intermediate steps are more important than the final result. Ensure you clearly show intermediate steps otherwise you will not get full credit. You will be penalized for shabby work!

	Name:
	

1. What is the “Von Newmann” or “Stored Program” architecture? [2 points]

	Computer architecture in which instructions and data are stored in the same main memory is called the Von Newmann architecture. The most important characteristic is that there is no clear distinction between instructions and data. The difference is made just when the data path fetches a part of memory for processing.

2. Present an example of a symbol table with at least 3 symbols in it. Explain the concept and use of a symbol table using your example (no more than 6-7 sentences)
[4 points]

	A symbol table is a data structure that contains the mapping between symbols and the address corresponding to each symbol. Each symbol used in an assembly code is entered into the symbol table along with the address. Whenever a symbol is referenced, the symbol table is used to identify the address associated with the symbol. The symbol table is typically automatically generated by the assembler.
	Symbol

Address

Val1

0x20

Label1

0x30

fileName

0x50

Input

0x60

What are mnemonics? Why are they used? [2 points]

	Mnemonics are designed to be memory aids to enable use of instructions instead of remembering the bit patterns associated with various microprocessor instructions. The primary motivation for the use of mnemonics is to reduce the cumbersome overhead of having to track and remember bit patterns associated with instructions. It is eases development and understanding of machine language source codes.

3. What is an assembly language program? [2 points]

	An assembly language program uses mnemonics, constants, and labels to describe various instructions used to develop a program.

4. In order to execute (or run) an assembly language program, the following steps and software tools need to be used. Provide 1-2 sentences describing the tasks performed by each tool/step. In addition, clearly indicate the input and output (using appropriate terminology) from each of the steps shown below.

[6 points]

a. Text editor (Input: Source code, Output: Source file):

	The text editor is used to type, edit, and save assembly programs.

b. Assembler (Input: Source file, Output: Object code):

	The assembler is a software that is used to convert an assembly source code into an intermediate binary format called the Object Code.

c. Linker (Input: Object code, Output: Executable):

	The linker is used to convert the intermediate object code to the final executable binary that can be loaded by the operating system and run by the microprocessor.

5. Using the Intel instruction set manuals as reference (available off Blackboard under Documents→Handouts folder), fill-in the information for the following x86 instructions. I have already done the first instruction as an example of the expected information for each instruction. Note: Copy-pasting from online resources is plagiarism! You are expected to read and suitably paraphrase necessary information from the Intel manual.

 [11*2 = 22 points]

	Instruction
	Description (1 sentence in your own words)
	Two example Usages (with Instruction format & OpCodes)
	Flags Affected

	
	
	Assembly
	Format
	OpCode
	

	ADD
	Adds value in a register or memory location to another register.
	add %al, %bl
	add r/m8, r8
	00 /r
	OF, CF, ZF

	
	
	add %eax, v
	add r32. r/m32
	03 /r
	

	MUL
	Performs unsigned multiplication with value of a register or memory location with eax register and stores results in edx:eax registers.
	mulb %bl
	MUL r/m8
	F6 /4
	OF, CF are set based on edx. SF, ZF, AF, & PF are undefined

	
	
	mul %bx
	MUL r/m16
	F7 /4
	

	DIV
	Divides (usigned) EDX:EAX registers or their sub-registers with the specified parameter and stores quotient in eax and remainder in edx.
	divb %bl
	DIV r/m8
	F6 /6
	CF, OF, AF, SF, ZF, and PF are undefined

	
	
	divw %bx
	DIV r/m16
	F7 /6
	

	CMP
	Compares 2 operands and sets flags. Operands are unaffected.
	cmpb $0, %al
	CMP AL, imm8
	3C ib
	CF, OF, AF, SF, ZF, and PF are set

	
	
	cmpl %eax, %ebx
	CMP r/m32, r32
	39 /r
	

	INC
	Adds 1 to a register or memory operand.
	incb %al
	INC r/m8
	FE /0
	OF, AF, SF, ZF, and PF are set

	
	
	incl %ebx
	INC r/m32
	FF /0
	

	DEC
	Subtracts 1 from a register or memory operand.
	decb %al
	DEC r/m8
	FE /1
	OF, AF, SF, ZF, and PF are set

	
	
	decl %ebx
	DEC r/m32
	FF /1
	

	XOR
	Perofrmance bit-wise exclusive-OR on the two operands specified.
	xorb %al,%al
	XOR r/m8, r8
	30 /r
	OF and CF are set to 0 (cleared). SF, ZF, and PF are set.

	
	
	xorl $30, %eax
	XOR EAX, imm32
	35 id
	

	NOP
	Instruction performs no operations. Just introduces delays in processing.
	nop
	NOP
	90
	None.

	
	
	Not available
	NOP r/m16
	OF 1F /0
	

	NOT
	Performance bitwise NOT of a register or memory operand.
	notb %al
	NOT r/m8
	F6 /2
	None

	
	
	notb %eax
	NOT r/m32
	F7 /2
	

	NEG
	Inverts the sign of a signed number.
	negb %al
	NEG r/m8
	F6 /3
	OF, AF, SF, ZF, and PF are set

	
	
	negb %eax
	NEG r/m32
	F7 /3
	

	SETcc
	Sets a byte register or memory location to 1 if condition is met otherwise the destination is set to 0.
	setnzb %al
	SETNZ r/m8
	0F 95
	None

	
	
	setge %al
	SETGE r/m8
	0F 9D
	

	CMOVcc
	Conditionally copy a source operand to destination operand.
	cmovaw %ax, %bx
	CMOVA r16, r/m16
	0F 47 /r
	None

	
	
	cmovaew %ax, %bx
	CMOVAE r16, r/m16
	0F 43 /r
	

6. In this exercise, you are expected to inspect the binary executable files generated after assembling and linking assembly source codes. For this question you are already supplied with a simple assembly language program called q7.s that simply prints a message “Hello World” on the console. You are expected to inspect the binary executable using the objdump utility. objdump program performs various operations (refer to man pages for details) one of which is to disassemble a binary file. The syntax for using objdump to disassemble a binary file is: objdump -d <filename>, where filename in our case would be q7 (the final executable). When disassembling a binary file, objdump generates output in the following (3 column) format:

	Memory-address: binary-instructions assembly-code

· memory-address is the address where the instruction is stored in memory

· binary-instructions is the actual instructions encoded in binary format (1-6 bytes displayed in hex)

· assembly-code is the interpretation of binary-instructions in assembly.

a. Now, using objdump, disassemble q7 (executable). From the disassembly output, copy-paste the line of output corresponding to the “mov $1, %eax” instruction in the program into the gray box shown below: [1 point]
	804808a: b8 01 00 00 00 mov $0x1,%eax

b. Now, using objdump, disassemble q7 (executable). From the disassembly output, copy-paste the line of output corresponding to the “mov $0, %ebx” instruction in the program into the gray box shown below: [1 point]
	804808f: bb 00 00 00 00 mov $0x0,%ebx

c. Now compare/contrast the instruction encoding for the above two instructions by responding to the following questions: [3 points]
	a.
	Are the sizes of the instructions different (yes/no)?
	yes

	
	
	

	b.
	Is the constant value embedded in the instruction (yes/no)?
	yes

	
	
	

	c.
	What are the opcodes (in hex) for the two instructions?
	b8 and bb

d. From the above information briefly (1-2 sentences) describe why the opcodes for the two instructions are different? [1 point]
	The op codes are different because the instructions are storing constants in different registers. The op codes distinguish between the two registers.

e. Using the above information illustrate the machine code for encoding the instruction movl $0xaabbccdd, %eax in the box below: [2 points]
	b8 ddccbbaa

f. Using the memory-address column, determine the size of the above instruction (in bytes, by subtracting memory-address of next and previous instructions) and enter the value below: [1 point]
	5 bytes

g. Using the memory-address column, determine the size of the above instruction (in bytes, by subtracting memory-address of next and previous instructions) and enter the value below: [1 point]
	5 bytes

h. Using the memory-address column, determine the size (of just the instructions) of your program (in bytes) and enter the value below: [1 point]
	0x8048096 – 0x8048074 = 34 bytes

7. Now, to experiment with using the GNU debugger (gdb) via emacs using the following steps:

a. Open hello.s in emacs and run gdb as per the instructions in LinuxEnvironemnt.doc (available off Blackboard under Documents→Handouts)

b. Place a breakpoint at the first “int $0x80” instruction.

c. Run the program under gdb.

d. When the breakpoint is hit, inspect the registers to determine the values for the following items: [2 points]
	i.
	The value of register eax is:
	4

	
	
	

	ii.
	The value of register eip is:
	0x8048088

e. Why do you think eip is set to the value you have indicated above (refer to the disassembly of executable from previous question for more cues) [2 points]
	eip register points to the next instruction to be executed. Since the breakpoint is hit just before an instruction is executed the eip register contains the memory address of the instruction int $0x80.

f. Make a screen shot of the emacs window illustrating the value of registers and place a screen shot below:

[5 points]
[image: image1.png]emacs@easlnx01.muohio.edu]

File Edit Options Buffers Tools Gud Complete InfOut Signals Help

Cw*x L REGY?

cax 4
ecx (x8049098 134516858

edx d 13

ebx ol 1

esp (xbF{74150 (xbE{74150

ebp 00 0x0

esi o 0

edi

eip (x8048088 0x8048088 (_start+20)
etlags 0x200292 [&F SF IF ID

cs T

55 13

ds 13

es 13

fs

=
%gdb) 1

Uz éeud-hellofonlde (Debugger:run) ~~1.33-—C6~Bot:
. tex

.global _start
start: . X
wov §4, feax /# Systen call to write to a file handle %/
ov §1, Hebx 7% F1le handle=] inpliss standard output */
wov $nse, fecx ; Address of uessage to be displaved
/
/

wov $13, #edx Nunber of bytes to be displayed
dl ant §0x80 Call 05 to display the characters

oy % . # The systen call for exit (sys exit) = #/
oy §{), febx /% Exit with return code of 0 (no error) #/
it $0x80

.data
/% The data to be displayed #/
Sg: , string "Hello World!\n”
— hellollorld, s (Asseubler) =-L9-—C0--Top-

8. Assuming the irrational constant (can be represented as 22/7 complete the following program that is attempting to compute the area of a circle. Assume the variable r contains the radius of the circle. You must store the area of the circle in the variable area (that is already defined for you). [5 points]

	.text

.global _start

_start:
 /* Compute area of circle */

 Movl $22, %eax
 Xorl %edx, %edx /* set edx to 0 */

 Imull r

 Imull r /* now eax = 22 * r * r */

 Movl $7, %ebx

 Xorl %edx, %edx /* set edx to 0 */

 Idivl %ebx /* now eax = 22 * r * r / 7 */
 Movl %eax, area
exit:

 movl $1, %eax /* Set eax=1, SysCall Code for exit */

 movl $0, %ebx /* Exit code value set to zero */

 int $0x80 /* Transfer control to OS */

.data

r : .int /* Assume some unknown value for radius r */
area : .int 0

9. Complete the following program that is attempting to convert a given temperature value from Celsius to Fahrenheit. Assume that a valid temperature is stored in the predefined variable celsius. You must store the temperature in Fahrenheit in the variable fahren (that is already defined for you). The formula for converting Celsius of Fahrenheit is: Fahrenheit = Celsius * 9 / 5 + 32. [5 points]

	.text

.global _start

_start:

 /* Convert Celsius to Fahrenheit */

 Movl $9, %eax
 Xorl %edx, %edx /* set edx to 0 */

 Imull celsius
 Xorl %edx, %edx /* set edx to 0 */

 Movl $5, %ebx

 Idivl %ebx
 Addl $32, %eax

 Movl %eax, fahren
exit:

 movl $1, %eax /* Set eax=1, SysCall Code for exit */

 movl $0, %ebx /* Exit code value set to zero */

 int $0x80 /* Transfer control to OS */

.data

celsius: .int /* Assume some unknown value for celsius */
fahren : .int 0

	Page 9 of 9

