	Due date:
	Fri, Oct 31 2008 (Before Class)

Computer Architecture

Assignment #6
Due: Friday October 31 2008 by 12:00 PM (beginning of class)
Email-based Help Cutoff: Noon on Thu 30th October 2008

Maximum Points: 68
	Objective

The objective of this homework is to obtain an understanding of x86 architecture, x86 instruction set, and assembly language programming.
Submission Instructions

Download and save this MS-Word document to your machine. Complete the solution for each one of the following exercises in this document. Once you have completed all the solutions upload the document back to Blackboard using the appropriate link. The schematics (if any) must be drawn using MultiSIM, with necessary labels. For the number conversion exercises, the intermediate steps are more important than the final result. Ensure you clearly show intermediate steps otherwise you will not get full credit. You will be penalized for shabby work!

	Name:
	

1. What is the “Von Newmann” or “Stored Program” architecture? [2 points]

	

2. Present an example of a symbol table with at least 3 symbols in it. Explain the concept and use of a symbol table using your example (no more than 6-7 sentences)
[4 points]

	

3. What are mnemonics? Why are they used? [2 points]

	

4. What is an assembly language program? [2 points]

	

5. In order to execute (or run) an assembly language program, the following steps and software tools need to be used. Provide 1-2 sentences describing the tasks performed by each tool/step. In addition, clearly indicate the input and output (using appropriate terminology) from each of the steps shown below.

[6 points]

a. Text editor (Input: __________, Output: _________):

	

b. Assembler (Input: __________, Output: _________):

	

c. Linker (Input: __________, Output: _________):

	

6. Using the Intel instruction set manuals as reference (available off Blackboard under Documents→Handouts folder), fill-in the information for the following x86 instructions. I have already done the first instruction as an example of the expected information for each instruction. Note: Copy-pasting from online resources is plagiarism! You are expected to read and suitably paraphrase necessary information from the Intel manual.

 [11*2 = 22 points]

	Instruction
	Description (1 sentence in your own words)
	Two example Usages (with Instruction format & OpCodes)
	Flags Affected

	
	
	Assembly
	Format
	OpCode
	

	ADD
	Adds value in a register or memory location to another register.
	add %al, %bl
	add r/m8, r8
	00 /r
	OF, CF, ZF

	
	
	add %eax, v
	add r32. r/m32
	03 /r
	

	MUL
	
	
	
	
	

	
	
	
	
	
	

	DIV
	
	
	
	
	

	
	
	
	
	
	

	CMP
	
	
	
	
	

	
	
	
	
	
	

	INC
	
	
	
	
	

	
	
	
	
	
	

	DEC
	
	
	
	
	

	
	
	
	
	
	

	XOR
	
	
	
	
	

	
	
	
	
	
	

	NOP
	
	
	
	
	

	
	
	
	
	
	

	NOT
	
	
	
	
	

	
	
	
	
	
	

	NEG
	
	
	
	
	

	
	
	
	
	
	

	SETcc
	
	
	
	
	

	
	
	
	
	
	

	CMOVcc
	
	
	
	
	

	
	
	
	
	
	

7. In this exercise, you are expected to inspect the binary executable files generated after assembling and linking assembly source codes. For this question you are already supplied with a simple assembly language program called q7.s that simply prints a message “Hello World” on the console. You are expected to inspect the binary executable using the objdump utility. objdump program performs various operations (refer to man pages for details) one of which is to disassemble a binary file. The syntax for using objdump to disassemble a binary file is: objdump -d <filename>, where filename in our case would be q7 (the final executable). When disassembling a binary file, objdump generates output in the following (3 column) format:

	Memory-address: binary-instructions assembly-code

· memory-address is the address where the instruction is stored in memory

· binary-instructions is the actual instructions encoded in binary format (1-6 bytes displayed in hex)

· assembly-code is the interpretation of binary-instructions in assembly.

a. Now, using objdump, disassemble q7 (executable). From the disassembly output, copy-paste the line of output corresponding to the “mov $1, %eax” instruction in the program into the gray box shown below: [1 point]
	

b. Now, using objdump, disassemble q7 (executable). From the disassembly output, copy-paste the line of output corresponding to the “mov $0, %ebx” instruction in the program into the gray box shown below: [1 point]
	

c. Now compare/contrast the instruction encoding for the above two instructions by responding to the following questions: [3 points]
	a.
	Are the sizes of the instructions different (yes/no)?
	

	
	
	

	b.
	Is the constant value embedded in the instruction (yes/no)?
	

	
	
	

	c.
	What are the opcodes (in hex) for the two instructions?
	

d. From the above information briefly (1-2 sentences) describe why the opcodes for the two instructions are different? [1 point]
	

e. Using the above information illustrate the machine code for encoding the instruction movl $0xaabbccdd, %eax in the box below: [2 points]
	

f. Using the memory-address column, determine the size of the above instruction (in bytes, by subtracting memory-address of next and previous instructions) and enter the value below: [1 point]
	

g. Using the memory-address column, determine the size of the above instruction (in bytes, by subtracting memory-address of next and previous instructions) and enter the value below: [1 point]
	

h. Using the memory-address column, determine the size (of just the instructions) of your program (in bytes) and enter the value below: [1 point]
	

8. Now, to experiment with using the GNU debugger (gdb) via emacs using the following steps:

a. Open hello.s in emacs and run gdb as per the instructions in LinuxEnvironemnt.doc (available off Blackboard under Documents→Handouts)

b. Place a breakpoint at the first “int $0x80” instruction.

c. Run the program under gdb.

d. When the breakpoint is hit, inspect the registers to determine the values for the following items: [2 points]
	i.
	The value of register eax is:
	

	
	
	

	ii.
	The value of register eip is:
	

e. Why do you think eip is set to the value you have indicated above (refer to the disassembly of executable from previous question for more cues) [2 points]
	

f. Make a screen shot of the emacs window illustrating the value of registers and place a screen shot below:

[5 points]
9. Assuming the irrational constant (can be represented as 22/7 complete the following program that is attempting to compute the area of a circle. Assume the variable r contains the radius of the circle. You must store the area of the circle in the variable area (that is already defined for you). [5 points]

	.text

.global _start

_start:
 /* Compute area of circle */

exit:

 movl $1, %eax /* Set eax=1, SysCall Code for exit */

 movl $0, %ebx /* Exit code value set to zero */

 int $0x80 /* Transfer control to OS */

.data

r : .int /* Assume some unknown value for radius r */
area : .int 0

10. Complete the following program that is attempting to convert a given temperature value from Celsius to Fahrenheit. Assume that a valid temperature is stored in the predefined variable celsius. You must store the temperature in Fahrenheit in the variable fahren (that is already defined for you). The formula for converting Celsius of Fahrenheit is: Fahrenheit = Celsius * 9 / 5 + 32. [5 points]

	.text

.global _start

_start:

 /* Convert Celsius to Fahrenheit */

exit:

 movl $1, %eax /* Set eax=1, SysCall Code for exit */

 movl $0, %ebx /* Exit code value set to zero */

 int $0x80 /* Transfer control to OS */

.data

celsius: .int /* Assume some unknown value for celsius */
fahren : .int 0

	Page 1 of 7

